α-Adrenoceptor binding in guinea-pig lung using [³H]-prazosin

P.J. BARNES, C.T. DOLLERY, C.A. HAMILTON & J.S. KARLINER

Department of Clinical Pharmacology, Royal Postgraduate Medical School, London

 β -Adrenoceptors in lung membranes have been characterised by radioligand studies using (-)- $[^3H]$ dihydroalprenolol ([3H]-DHA) (Rugg, Barnett & Nahorski, 1978), but there has been no previous study of α -adrenoceptor binding in pulmonary tissue. We have used [3H]-prazosin, a new radioligand of high specific radioactivity (33 Ci/mmol) to study α-adrenoceptors in guinea-pig lung membranes. There is considerable evidence that α-adrenoceptors in peripheral tissues may be classified as postjunctional (α_1) or prejunctional (α_2) and α -adrenoceptor agonists and antagonists vary widely in their relative pre- and postsynaptic potencies. Prazosin is an α -adrenoceptor antagonist which has a high selectivity for peripheral α₁ receptors (Cambridge, Davey & Massingham, 1977) and [3H]-prazosin has recently been shown to bind to rat brain α-adrenoceptors with a high degree of specificity (Greengrass & Bremner, 1979).

Guinea-pig lungs, dissected free of major bronchi, were homogenised, centrifuged at 50,000 g and the final pellet resuspended at a concentration of approximately 1 mg protein/ml. Aliquots of the homogenate were incubated at 25°C for 15 min with various concentrations of [³H]-prazosin from 0.05 nm to 4.0 nm in a final volume of 1.0 ml. Bound radioactivity was isolated on GF/B filters followed by 2×6 ml washes with incubation buffer and quantified by scintillation counting. Specific binding, defined as that displaced by phentolamine (1 μ m), comprised 70-80% of the total binding at ligand concentrations of 0.05-1.0 nm.

Specific [³H]-prazosin binding was rapid (T_{+} association = 2 min) at a ligand concentration of 0.26 nm, remained at a steady state for more than 30 min,

and was reversible (T_{\pm} dissociation = 1 min). Specific binding was saturable reaching a plateau between 1 and 2 nm [3 H]-prazosin and Scatchard analysis (n=5) revealed a single receptor population with $K_{\rm D}$ of 0.24 \pm 0.05 nm (mean \pm s.e. mean) with a maximum binding capacity (Bmax) of 54 \pm 7 fmol/mg protein. A Hill plot gave a slope of 1.06 indicating absence of cooperativity.

For comparison, binding of the β -adrenoceptor antagonist [3 H]-DHA was measured under identical conditions and specific binding was defined as that displaced by propranolol (10 μ M). This gave a K_D of 0.93 \pm 0.1 nM and a B_{max} of 870 \pm 112 fmol/mg protein. Thus in guinea-pig lung membranes the ratio of beta: α adrenoceptor binding sites is approximately 16:1.

Adrenoceptor agonists inhibited [3 H]-prazosin binding in the order: (-)adrenaline > (-)noradrenaline > (-)phenylephrine > (-)isoprenaline; (+)noradrenaline was $100 \times$ less potent than (-)noradrenaline. α -Adrenoceptor antagonists competed for binding in the order: prazosin > phentolamine » piperoxan > yohimbine, indicating that [3 H]-prazosin binding is probably to α_1 adrenoceptors as it is inhibited by potent α_1 adrenoceptor antagonists but not by drugs more potent at α_2 sites. Propranolol, methysergide and sulpiride inhibited binding only at concentrations greater than $10 \mu M$.

References

CAMBRIDGE, D., DAVEY, M.J. & MASSINGHAM, R. (1977). The pharmacology of antihypertensive drugs with special reference to vasodilators, alpha-adrenergic blocking agents and prazosin. Med. J. Aust. Specl. Suppl., 2, 2-6.

Greengrass, P. & Bremner, R. (1979). Binding characteristics of [³H]-prazosin to rat brain alpha adrenergic receptors. *Eur. J. Pharmac.*, **55**, 423–326.

RUGG, E.L., BARNETT, D.B. & NAHORSKI, S.R. (1978). Coexistence of beta₁ and beta₂ adrenoceptors in mammalian lung: evidence from direct binding studies. *Mol. Pharmac.*, 14, 38-49.

Interaction between prazosin and benzodioxan antihypertensives (R 28935 and R 29814); a competition for central α_1 -adrenoceptors

H.Y. KWA, P.B.M.W.M. TIMMERMANS & P.A. VAN ZWIETEN

Department of Pharmacy, Division of Pharmacotherapy, University of Amsterdam

Previous studies have established that the erythroisomer of 1-{1-(2-(1,4-benzodioxan-2-yl)-2-hydroxyethyl)-4-piperidyl}-2-benzimidazolinone (R 28935) lowers arterial pressure via an action within the central nervous system. Although appreciably less active than R 28935, the threo-isomer (R 29814) also displays a central hypotensive effect. However, the exact mechanism is still unknown. Central α-adrenoceptors have been excluded to play a substantial role, since central α-adrenoceptor antagonism accomplished by yohimbine, piperoxan, tolazoline and phentolamine did not affect the responses (Finch, 1975; Wellens et al., 1975; van Zwieten, 1975; Taylor & Antonaccio, 1978). The present study reports on the impairment of